Hannah K. Wayment-Steele, Ph.D.

415 South Street, Waltham, MA 02453

wayment@brandeis.edu

-				
40	1169	tı	n	
ĽU	uca	LI	u	ч.

Ph.D., Chemistry, Stanford University	2016 - 2021
M.Phil., Chemistry, Cambridge University (funded by the Churchill scholarship)	2015 - 2016
B.A. magna cum laude, Chemistry and Mathematics double major, Pomona College	2011 - 2015
Research Experience	
▲	
Jane Coffin Childs Postdoctoral Fellow, Brandeis University	2022 – present
 Deep learning and high-throughput experiment for enzyme design. 	
Postdoctoral Fellow, Wyss Institute, Harvard Medical School	2021 - 2022

Characterized DNA-based technologies for ultra-sensitive protein detection.

Graduate research with Rhiju Das and Vijay Pande, Stanford University

2016 - 2021

- Created biophysical models for RNA degradation, applied methods to design experimentally-validated model RNA therapeutics with improved shelf lives.
- Developed improved algorithms and novel experimental frameworks for RNA thermodynamic prediction using statistical mechanics to link high-throughput experiment and machine learning.
- Developed theoretical links between dynamical systems theory and unsupervised machine learning frameworks to create improved analysis tools for protein dynamics.

Graduate research with Daan Frenkel, Cambridge University

2015 - 2016

Improved understanding of DNA nanomaterial nucleation and assembly via molecular modelling.

Select Honors and Awards

Jane Coffin Childs Postdoctoral Fellowship			
Award for Outstanding Graduate Research, ACS PHYS division, Journal Chemical Physics			
Chemical Computing Group Excellence Award, ACS COMP division			
Joseph R. McMicking Award, Stanford Chemistry Department	2021		
NSF Graduate Research Fellowship	2016		
Churchill Scholarship, Sir Winston Churchill Foundation of the USA			
John Stauffer Prize for Academic Merit in the Sciences (Pomona College)			
Awarded to one graduate annually in the natural sciences who exhibits the highest academic promise.			
Beckman Scholar	2014		
Goldwater Scholar	2014		

Select Peer-Reviewed Publications

- <u>Wayment-Steele, H.K.,</u> Kladwang, W., Strom, A. I., Becka, A., Lee, J., Treuille, A., Eterna Participants, Das, R. (2022). RNA secondary structure packages evaluated and improved by high-throughput experiments. *Nature Methods* (In Press).
- **Wayment-Steele, H. K.*,** Kladwang, W.*, Watkins, A. M.*, Kim, D. S.*, Tunguz, B.*, ... Das, R. (2022) Predictive models of RNA degradation via dual crowdsourcing. *Nature Machine Intelligence* (In Press).
- Leppek, K.*, Byeon, G.W.*, Kladwang, W.*, **Wayment-Steele, H. K.*,** Kerr, C. H.*, ... Barna, M., Das, R. (2022) Combinatorial optimization of mRNA structure, stability, and translation for RNA-based therapeutics. *Nature Communications* (13) 1536. *Equal contributions.
- Andreasson, J. O., Gotrik, M. R., Wu, M. J., <u>Wayment-Steele, H. K.,</u> Kladwang, W., Portela, F., Wellington-Oguri, R., Eterna Participants, Das, R., Greenleaf, W. J. (2022). Crowdsourced RNA design discovers diverse, reversible, efficient, self-contained molecular sensors. *Proceedings of the National Academy of Sciences* (119) 18.
- **Wayment-Steele, H.K.,** Kim, D.S., Choe, C.A., Nicol, J.J., Wellington-Oguri, R., Sperberg, R.A.P., Huang, P., Eterna Participants, Das, R. (2021). Theoretical basis for stabilizing messenger RNA through secondary structure design. *Nucleic Acids Research*, 48(18), 10604-10617.
- <u>Wayment-Steele, H. K.,</u> Wu, M., Gotrik, M., Das, R. (2019). Evaluating riboswitch optimality. *Methods in Enzymology*, 623, 417-450.
- Kostrz, D., <u>Wayment-Steele, H. K.,</u> Wang, J. L., Follenfant, M., Pande, V. S., Strick, T. R., Gosse, C. (2019). A modular DNA scaffold to study protein–protein interactions at single-molecule resolution. *Nature Nanotechnology*, 14(10), 988-993.

- **Wayment-Steele, H. K.,** Pande, V. S. (2018). Variational encoding of protein dynamics benefits from maximizing latent autocorrelation. *The Journal of Chemical Physics*, 149(21), 216101.
- Hernandez, C. X.*, **Wayment-Steele, H. K.***, Sultan, M. M.*, Husic, B. E., Pande, V. S. (2018). Variational Encoding of Complex Dynamics. *Physical Review E*, 97(6), 062412. *Equal contributions.
- Sultan, M. M., <u>Wayment-Steele, H. K.</u>, Pande, V. S. (2018). Transferable neural networks for enhanced sampling of protein dynamics. *Journal of Chemical Theory and Computation*, 14(4), 1887-1894.
- **Wayment-Steele, H. K.,** Frenkel, D., Reinhardt, A. (2017) "Investigating the role of boundary bricks in DNA brick self-assembly." *Soft Matter* (2017) 13, 1670-1680.
- **Wayment-Steele, H. K.**, Jing, Y., Swann, M. J., Johnson L. E., Agnarsson, B., Johal, M. S., Kunze, A. (2016) "Effects of Al³⁺ on phosphocholine and phosphoglycerol containing solid supported lipid bilayers." *Langmuir* 32:7, 1771–1781.

Full publication list at https://scholar.google.com/citations?user=MHNfkuUAAAAI

Patent Applications

- <u>H. K. Wayment-Steele</u>, E. Sharma, R. Das, W. Greenleaf. 63/245,744, "Systems and Methods to Determine Nucleic Acid Thermodynamics and Uses thereof", Sep. 17, 2021.
- R. Das, <u>H. K. Wayment-Steele.</u> PCT/US2021/040026, "Systems and Methods to Enhance RNA Stability and Translation and Uses Thereof", July 1, 2021.
- R. Das, C. A. Choe, <u>H. K. Wayment-Steele</u>, W. Kladwang, 17/364,890, "Systems and Methods to Enhance RNA Stability and Translation and Uses Thereof", June 30, 2021.

Software Repositories (Lead Developer)

- "Superfolder COVID mRNA vaccines" https://github.com/DasLab/superfolder-covid-mrna-vaccines
- Public repository of designed stabilized sequences for S-2P mRNA COVID vaccines and variant strains. "Arnie" https://github.com/DasLab/arnie
 - General tool for comparing RNA structure algorithms. Used by over 1600 teams for data augmentation in machine learning competition on Kaggle.

Select Presentations

- "Designing stabilized vaccines with community science." TEDx Washington High, Fremont, CA. May 1 2021.
- "Inferring RNA ensembles via high-throughput data." Center for HIV-1 Studies Annual Workshop, April 5 2021.
- "Improving the stability of RNA therapeutics through biophysics, machine learning, and crowdsourcing" IEEE Silicon Valley Chapter, Information Theory Society, Invited Talk, March 24 2021.
- "Improving RNA structure prediction with high-throughput crowdsourced data". International Conference on Intelligent Systems for Molecular Biology (ISMB), Virtual. 13 July 2020.

Select Teaching, Mentorship, Outreach Experience

2021 Program mentor, Center for Genetically Encoded Materials REU, UC Berkeley	
Co-instructor, BIOL 4013, Topics in Genomics, Prairie View A & M University	
2020 Program mentor, Stanford Summer Research Program	
2019 – 2021 Outreach lead, Eterna Project	
2017 – 2018 Teaching assistant mentor, Department of Chemistry, Stanford University	
2016 – 2017 Teaching assistant, Department of Chemistry, Stanford University	
2015 Supervisor, Nanotechnology Doctoral Training Center, Cavendish lab, Cambridge Uni	versity